OWNER'S MANUAL
Including Installation Instructions And Warranty Information

TO SUIT HEAT PUMP STORAGE WATER HEATER MODELS

Compact: 150-08ACW-134
 200-08ACW-134
 270-11AC3-134
 340-11AC3-134
 270-11AC4-134
 340-11AC4-134
 340-17ACW-134

Split: 150-08ASW-134
 200-08ASW-134
 270-11AS4-134
 340-11AS4-134
 340-17ASW-134 (340TIH-134)

(with Recommended Connections for Commercial Models)

FOR ADVICE, REPAIRS AND SERVICE
Australia: 1800 644 705
 New Zealand: 0800 402 002

Document Number: QDC0030PD-16.4
(From Series No.SUZ070001 to Series No. SUZ070336)
Date Of Revision: Oct. 2011
Contents

Section 1: APPLIANCE DETAILS ... 5
 1a: Owner’s Details ... 5
 1b: Installer’s Details 1c: Service History 5

Section 2: INTRODUCTION ... 6
 2a: One Of The World’s Most Energy Efficient Methods Of Water Heating .. 6
 2b: Time Delay On Start .. 6
 2c: Features Of Your Quantum Water Heater 6

Section 3: INSTALLATION DETAILS .. 7
 3a: General Installation Requirements .. 7
 3a.1: Location .. 7
 3a.2: Corrosion Protection ... 7
 3b: Air Flow .. 7
 3c: Evaporator Drain .. 8
 3d: Pressure & Temperature Relief Valve (PTR) 8
 3e: Expansion Control Valve (ECV) ... 8
 3f: Cold Water Connection ... 8
 3g: Pressure Reducing Valve ... 8
 3h: Caution Regarding Glass Lining Of Tank 8
 3i: Suitability For Installation In Frost Areas 8
 3j: Draining Of Tank ... 11
 3k: Hot Water Connection ... 11
 3l: Tempering Valves ... 11
 3m: Electrical Connection .. 11
 3m.1: Safety Notes .. 11
 3n: Refrigeration Connections (Split Models Only) 12
 3n.1: Refrigeration Tube Sizes .. 12
 3o: Caution Regarding Drilling Metal Jacket 12

Section 4: OPERATING INSTRUCTIONS .. 12
 4a: Filling The Water Heater ... 12
 4b: Water Quality .. 12
 4c: Caution When Left Operating But Unused 12

Section 5: SAFETY INFORMATION .. 13
 5a: Safety Devices .. 13
 5b: Important Note Regarding PTR Valve 13
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6a</td>
<td>The Water Tank</td>
<td>13</td>
</tr>
<tr>
<td>6b</td>
<td>Air Evaporator Coils</td>
<td>14</td>
</tr>
<tr>
<td>6c</td>
<td>Sacrificial Anode</td>
<td>14</td>
</tr>
<tr>
<td>6d</td>
<td>Service Caution – Before Any Work Is Carried Out</td>
<td>14</td>
</tr>
<tr>
<td>6e</td>
<td>Thermal Overload (Incorporated in Digital Controller)</td>
<td>14</td>
</tr>
<tr>
<td>6f</td>
<td>Routine Service</td>
<td>14</td>
</tr>
<tr>
<td>6f.1</td>
<td>Six Month Service (By Owner)</td>
<td>15</td>
</tr>
<tr>
<td>6f.2</td>
<td>Five Year Service (By Authorized Personnel Only)</td>
<td>15</td>
</tr>
<tr>
<td>6f.3</td>
<td>Access & Removal Of Sacrificial Anode</td>
<td>15</td>
</tr>
<tr>
<td>6f.4</td>
<td>Flushing Of Water Tank</td>
<td>15</td>
</tr>
<tr>
<td>6f.5</td>
<td>Refrigeration & Thermostat Servicing</td>
<td>16</td>
</tr>
<tr>
<td>7a</td>
<td>Pressure & Temperature Relief Valve Running</td>
<td>16</td>
</tr>
<tr>
<td>7a.1</td>
<td>Continuous Trickle</td>
<td>16</td>
</tr>
<tr>
<td>7a.2</td>
<td>Steady Flow</td>
<td>16</td>
</tr>
<tr>
<td>7b</td>
<td>No Hot Water</td>
<td>16</td>
</tr>
<tr>
<td>7c</td>
<td>High Electricity Bills</td>
<td>17</td>
</tr>
<tr>
<td>8a</td>
<td>Terms of Warranty</td>
<td>17</td>
</tr>
<tr>
<td>8b</td>
<td>Items Not Covered By Warranty</td>
<td>18</td>
</tr>
<tr>
<td>8c</td>
<td>Before Phoning For Service</td>
<td>19</td>
</tr>
<tr>
<td>9</td>
<td>SPECIFICATIONS</td>
<td>20</td>
</tr>
<tr>
<td>10a</td>
<td>The Buttons</td>
<td>22</td>
</tr>
<tr>
<td>10a.1</td>
<td>SET Button</td>
<td>22</td>
</tr>
<tr>
<td>10a.2</td>
<td>UP Button</td>
<td>22</td>
</tr>
<tr>
<td>10a.3</td>
<td>DOWN Button</td>
<td>22</td>
</tr>
<tr>
<td>10b</td>
<td>Restore Factory Programming</td>
<td>22</td>
</tr>
<tr>
<td>10b.1</td>
<td>First Level: Press SET+UP for 6 seconds</td>
<td>22</td>
</tr>
<tr>
<td>10b.2</td>
<td>Second Level: Press SET+DOWN for 6 seconds</td>
<td>23</td>
</tr>
<tr>
<td>10b.3</td>
<td>Third Level: Press UP+DOWN for 6 seconds</td>
<td>23</td>
</tr>
<tr>
<td>10c</td>
<td>Error Codes</td>
<td>23</td>
</tr>
<tr>
<td>10d</td>
<td>De-Icing</td>
<td>23</td>
</tr>
<tr>
<td>10e</td>
<td>Operating Principle</td>
<td>23</td>
</tr>
<tr>
<td>10f</td>
<td>Adjusting</td>
<td>24</td>
</tr>
<tr>
<td>10f.1</td>
<td>Time Controller</td>
<td>24</td>
</tr>
</tbody>
</table>

Section 6: MAINTAINANCE & SERVICE INFORMATION
6a: The Water Tank
6b: Air Evaporator Coils
6c: Sacrificial Anode
6d: Service Caution – Before Any Work Is Carried Out
6e: Thermal Overload (Incorporated in Digital Controller)
6f: Routine Service
6f.1: Six Month Service (By Owner)
6f.2: Five Year Service (By Authorized Personnel Only)
6f.3: Access & Removal Of Sacrificial Anode
6f.4: Flushing Of Water Tank
6f.5: Refrigeration & Thermostat Servicing

Section 7: RECOGNITION OF ABNORMAL OPERATION
7a: Pressure & Temperature Relief Valve Running
7a.1: Continuous Trickle
7a.2: Steady Flow
7b: No Hot Water
7c: High Electricity Bills

Section 8: WARRANTY CERTIFICATE
8a: Terms of Warranty
8b: Items Not Covered By Warranty
8c: Before Phoning For Service

Section 9: SPECIFICATIONS

Section 10: OPERATION & ADJUSTMENT OF THE DIGITAL CONTROLLER
10a: The Buttons
10a.1: SET Button
10a.2: UP Button
10a.3: DOWN Button
10b: Restore Factory Programming
10b.1: First Level: Press SET+UP for 6 seconds
10b.2: Second Level: Press SET+DOWN for 6 seconds
10b.3: Third Level: Press UP+DOWN for 6 seconds
10c: Error Codes
10d: De-Icing
10e: Operating Principle
10f: Adjusting
10f.1: Time Controller
List of Figures

Figure 1: Installation Diagram (Compact Systems) .. 9
Figure 2: Installation Diagram (Split Systems) .. 10
Figure 3: Specifications & Dimensions .. 20
Figure 4: Split Fin Coil Evaporators .. 21
Figure 5: Picture of time controller ... 24
Figure 6: Wiring Diagram –150/200-08ACW-134 & 270/340-11AC3-134 25
Figure 7: Wiring Diagram –150/200-08ASW-134 & 340-17ASW-134 (340-TIH-134) ... 25
Figure 8: Wiring Diagram –340-17ACW-134 ... 26
Figure 9: Indicator –340-17ACW-134 ... 26
Figure 10: Wiring Diagram-with Timer –150/200-08ACW-134 & 270/340-11AC4-134 ... 27
Figure 11: Wiring Diagram-with Timer –150/200-08ASW-134 & 270/340-11AS4-134 27
Figure B1: Hydronic Connection for 340-17ACW3-134 32
Figure B2: Hydronic Connection for 1020-17ACW-134 32
Section 1: APPLIANCE DETAILS

For future convenience, please fill in the following details and retain with your original invoice.

1a: Owner’s Details
Surname: ……………………………… Given Name(s): ……………………………
Address: ……………………………………………………………………………
Town/Suburb: ……………………………………………………………………..
State/Territory: …………………………… Postcode: ……………………………
Date of Purchase: …………………

Purchased From: ………………………………………………………………………

Model: …………………………… Serial Number: ……………………………

Date of Manufacture: ………………………………………………………………………
(Details on Data Plate on water heater)

1b: Installer’s Details
Date of Installation: ………………… Installer’s Name: ……………………………
Address: ……………………………………………………………………………
Installer’s Signature: ………………………………………………………

1c: Service History
Date of Service: ………………… Serviced By: ……………………………
Work Carried Out: ……………………………………………………………
Signature of Service Agent: …………………………………………………

Date of Service: ………………… Serviced By: ……………………………
Work Carried Out: ……………………………………………………………
Signature of Service Agent: …………………………………………………

Date of Service: ………………… Serviced By: ……………………………
Work Carried Out: ……………………………………………………………
Signature of Service Agent: …………………………………………………

Date of Service: ………………… Serviced By: ……………………………
Work Carried Out: ……………………………………………………………
Signature of Service Agent: …………………………………………………
Section 2: INTRODUCTION

QUANTUM ENERGY TECHNOLOGIES

2a: One Of The World’s Most Energy Efficient Methods Of Water Heating Production

We thank you for your decision to purchase a Quantum Energy Technologies Heat Pump Water Heater, which will reward you with many years of low energy hot water production.

QUANTUM ENERGY TECHNOLOGIES Pty Ltd designs and manufactures energy efficient heat pump water heaters. The simple way to explain the advantage of this heater is that it saves energy in any weather, even at night.

For example, one of the models uses 1kW of electrical energy, however, they are able to put up to 3.6kW of heat energy into the water with 20°C ambient air. The system can save up to 75% of conventional water heater’s energy utilisation; greatly assisting in the worldwide greenhouse gas reduction campaign.

As the name indicates, a Heat Pump is a machine that pumps heat from a low temperature source to a high temperature reservoir. It has a cold side to absorb heat at low temperatures and a hot side to deliver heat at high temperatures.

Quantum heat pump water heater has an air conditioning coil as the cold side of the refrigeration circuit. This coil absorbs the heat from air that is forced through it by means of the fan. The Compact design is installed like a conventional electric water heater i.e. the electrical and plumbing connections are completed in the same manner.

There is also the Split design, which can be used to recover heat from a warm area like the roof space or the kitchen. The remote fan coil (energy collector) absorbs the heat energy from the warm air. Alternatively, the waste heat from the building can be used as the heat source.

QUANTUM heat pump water heaters can save energy in countries all around the world. They are used in all weather conditions for domestic, commercial and industrial applications, and are regarded as the most energy efficient and practical water heaters available.

This is your assurance that you have purchased one of the highest quality water heaters on the market and the one that will provide continuous hot water for all your needs – safely, economically, and for many years to come.

2b: Time Delay On Start

NOTE: The system has a 10-minute time delay on start or restart. When the power is first connected or after a disconnection then re connection, the time delay on start will occur. The compressor and fan will not operate until the completion of this time delay period.

2c: Features Of Your Quantum Water Heaters

1. Fully welded steel tank with class X vitreous enamel lining for superior corrosion resistance and longer life.

2. Indirect heat transfer eliminates cross contamination and tank hot spots.

3. No electrical element. The safest and one of the most energy efficient Heat Pump systems in the world, especially in cold weather, the efficiency is higher than any other solar/heat pump systems on the market.

4. Able to save more money than any other solar/heat pump systems on the market.
Warranty Return Card

Enclosed you will find a warranty card – please fill in the details and return to Quantum. This will ensure prompt service under warranty, if required (see Section 8 for terms of warranty).

Section 3: INSTALLATION DETAILS

3a: General Installation Requirements

This water heater must be installed by a licensed tradesperson, and in accordance with

3. Other relevant Australian and New Zealand Standard, Industry or Local Water Supply regulations or codes for mains pressure storage tanks.

Note: This water heater is not suitable for pool heating or building heating.

3a.1: Location

The water heater should be located as close as possible to the most frequently used hot water outlets. Adequate access must be made for service to the heat pump, water thermostat, relief valve and anode. Ensure that the specification label is clearly visible. The front service cover of the heat pump section (on top of tank) must be accessible from the front of the heater; this must **NOT** face the wall. The fan **MUST NOT** be up against a wall (minimum clearance 500mm).

The Compact model has a noise level similar to an air conditioner’s outdoor unit (52dBA @ 1.5 metre); therefore locating the unit away from bedrooms or living areas is recommended (both the owners & any neighbors).

Note: All models are equipped with a sacrificial anode, accessible through the top cover. We recommend allowing 400mm above the top of the water heater (if possible) for clearance to replace the anode.

The water heater should be placed on a 650mm x 650mm plinth if installed on a floor subject to wet conditions or outdoors. A properly drained overflow tray should be used where property damage could occur from water spillage. (See AS3500.4 for further details.)

Note: The warranty does not cover damage due to leakage of the water heater

3a.2: Corrosion Protection

Fittings and the Shell Surface in contact with the water are to be galvanically compatible. Sealants and / or Teflon plumbing tape should be used on potentially galvanically incompatible fittings. This is to protect against possible electrolytic corrosion between the metals (where moisture penetration could occur due to incorrectly or poorly sealed fittings).

3b: Air Flow

The air source models (compact and split) extract the required heat from air being drawn through their Fin Coil Evaporator. This produces cold exhaust air as a by-product. In order for the heaters to operate efficiently, good ventilation of the proposed location for the compact models or the split models’ separate evaporator is required. This is to provide warm air as a heat source and to remove the cold air being produced. The Compact therefore is best located externally, however a large double garage (minimum of 120 cubic meters) with some natural ventilation may also be
acceptable. The separate evaporator in the split models could be located externally or in a large well-ventilated ceiling space or garage.

3c: Evaporator Drain

During operation a certain amount of condensate water will flow from the evaporator drain. If allowed to simply flow out of the outlet, this water may pool below the unit and can cause problems to the water heater and/or area around it. The evaporator drain on both the Compact and Split Air units should be drained to a suitable location. This can be accomplished with a length of hose or pipe but must not be connected directly to the PTR valve or expansion valve drain.

3d: Pressure & Temperature Relief Valve (PTR)

The Pressure and Temperature relief valve (see tank data plate for rating), which is supplied with the unit, must be fitted and made accessible so that the release mechanism can be operated and, if required, the valve replaced. The outlet of the PTR valve must be suitably drained to remove the water discharged during the normal heating cycle. The valve thread is RP ½” / 15mm and must be installed into the top front socket.

Warning: A separate drain line must be run for this relief valve. It is not permitted to couple the drain lines from the relief valve and evaporator into a single common line. The use of a tundish under the evaporator drain with this then connected to the drain of the PTR valve is acceptable.

3e: Expansion Control Valve (ECV)

Where an Expansion Control Valve is fitted to the cold water supply, the ECV should be rated at 150kPa lower than the Pressure & Temperature Relief valve (PTR). It is a State requirement for SA & QLD that an ECV be fitted on the cold water supply line between the non-return valve and the water heater.

3f: Cold Water Connection

An approved isolating valve, approved non-return valve, line strainer (optional but recommended), and union must be fitted between the supply main and the RP ¾ / 20mm socket in the water heater. All fittings must be approved by the relevant Authority (refer to Figures 1 & 2).

3g: Pressure Reducing Valve

This water heater is designed for direct connection to a maximum water supply pressure of 800kPa. Where the mains pressure can exceed or fluctuate beyond this pressure, a pressure-limiting device (complying with AS1357) must be fitted in the cold-water supply line. This device must be installed after the isolating valve and set at or below 500kPa (or 350kPa if a 850kPa expansion control valve fitted). An ECV is fitted when the water supply has a tendency to form scale. This type of water is referred to as scaling water because calcium carbonate is deposited out of the water onto any hot metallic surface. The fitting of an ECV is mandatory in WA, SA and some other areas of Australia as dictated by local regulations.

3h: Caution Regarding Glass Lining Of Tank

When making the hot and cold water connections to the tank care should be taken not to apply excessive strain as damage to the tank spigots or glass lining may occur.

3i: Suitability For Installation In Frost Areas

The R134a refrigerant used has a boiling point of –26°C so there is no risk of damage to the heat pump from frost. Performance may be reduced in very low temperatures but the system will not be damaged by such climatic conditions.
Figure 1: Installation Diagram (Compact Systems)

NOTE:
1. In installing single Compact units, the fan should point out from, or along, the wall.
2. If the fan has to point towards to the wall, the distance between the unit and the wall should be at a minimum of 500mm.
3. In installing multiple Compact units, the fan should not point out to the unit adjacent, so that cold air being discharged from one unit is not drawn in by the one next to it.
4. The space between multiple units should be a minimum of 200mm for air flow, but 500mm is recommended for the convenience of service.
Figure 2: Installation Diagram (Split Systems)

Note: The pipes connected to the water heater’s cold water and hot water connections should not be the flexible/soft type.
3j: Draining Of Tank

Consideration should be given to the possible necessity of draining the tank at some point. Draining of the tank can be accomplished by the connection of a hose to the cold water inlet and running to a suitable drain. It will be necessary to disconnect the hot water outlet or PTR valve to relieve any partial vacuum created as the water flows out.

3k: Hot Water Connection

The hot water pipe should be connected to the RP ¾ / 20mm socket as shown in the Installation Diagram (Figures 1 & 2). If desired, a thermo siphon trap can be installed at the hot water outlet to further reduce heat loss (a “U” shaped loop will form such a trap – see Figures 1 & 2). It is recommended that all hot water lines be insulated. NOTE: Plugs are supplied with the water heater to plug off the inlet / outlet entries that are not required. Ensure that adequate sealing is applied to the plugs for a tight, leak proof seal.

3l: Tempering Valves

The tempering valve should be fitted on the hot water outlet of the Quantum units to reduce water temperature to the temperature designated in (e.g., 50°C as per the plumbing code). The high performance valves suitable for “Solar” type water heaters are recommended to be used. Standard tempering valves may also be used, but it may be not function as well as the high performance ones.

3m: Electrical Connection

Quantum water heaters are designed for single-phase 220/240V 50Hz A.C supply only. All electrical work must be conducted by a certified electrician according to the local regulations and AS3000. A 10 or 15-amp circuit breaker must be installed at the power supply for the hot water units up to 0.8kW or 1.7kW, respectively. The power connection rating for Quantum water heaters up to 1.1kW is 220-240VAC 50Hz 10A, and 15A for the 1.7kW models.

A separate circuit breaker is recommended for each unit in the case of multiple installations.

It is not recommended to wire the system to an earth leakage circuit breaker. There is lot of moisture present while in operation and this can lead to nuisance tripping.

The connection will require an approved, standard 240V On / Off switch or Junction Box in close proximity to the heater. The unit should be connected to Standard Domestic tariff. Off Peak connection is NOT recommended for Quantum heat pump units. If the unit is connected to an “Off Peak” connection, the minimum power availability must be at least 18 hours per day.

The fitted power cord is not to be removed; this cord should be connected with the building wiring in an On/Off switch enclosure or Junction Box. Faulty wiring may void the warranty if damage has been sustained to the compressor or heat pump from such faulty or sub-standard wiring.

3m.1: Safety Notes

Note.1: This water heater is fitted with a thermostat and over-temperature energy cut-out (both incorporated into the digital controller). Under no circumstances should the water heater be operated without both of these devices being in the circuit. Only a qualified electrician or the manufacturer should carry out replacement.

Note.2: If the supply cord is damaged, the manufacturer or its service agent or other similarly qualified person must replace it in order to avoid hazard.

Caution: The water heater must be filled with water before turning on the electricity
3n: Refrigeration Connections (Split Models Only)

Refrigeration pipe work is very specialized and should only be completed by a licensed tradesperson.

Maximum refrigeration pipe length from the tank connections to the evaporator is 9m.

If the evaporator is mounted below the tank connection point, then a suitable oil trap needs to be installed on the suction line between the evaporator and the heat pump.

3n.1: Refrigeration Tube Sizes

<table>
<thead>
<tr>
<th>Model</th>
<th>Copper Tube Size - Inlet</th>
<th>Copper Tube Size - Outlet</th>
<th>Copper Tube Size – Outlet (if evaporator below tank level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150/200-08ASW-134</td>
<td>3/8 Inch (9.5mm)</td>
<td>3/8 Inch (9.5mm)</td>
<td>3/8 Inch (9.5mm)</td>
</tr>
<tr>
<td>270/340-11AS4-134</td>
<td>3/8 Inch (9.5mm)</td>
<td>1/2 Inch (12.7mm)</td>
<td>3/8 Inch (9.5mm)</td>
</tr>
<tr>
<td>340-17ASW-134</td>
<td>3/8 Inch (9.5mm)</td>
<td>3/8 Inch (16.0mm)</td>
<td>1/2 Inch (12.7mm)</td>
</tr>
</tbody>
</table>

3o: Caution Regarding Drilling Metal Jacket

This is extremely important and **MUST** be adhered to without exception!

DO NOT DRILL ANY HOLES IN OUTER METAL JACKET
DAMAGE TO REFRIGERATION LINES MAY RESULT

Section 4: OPERATING INSTRUCTIONS

4a: Filling The Water Heater

Open all hot water taps. Open isolating valve at the cold-water inlet and allow the water heater to fill until water flows through the system. Close each hot water tap after the air is expelled from its line.

4b: Water Quality

Your Quantum water heater has been manufactured to suit the water conditions of most Australian and New Zealand metropolitan supplies. Please note that harsh water supplies can have a detrimental effect on the water heater and its life expectancy. If you are unsure about your water quality you can obtain information from your local water supply authority.

By using the correct anode this water heater can be used in areas where the Total Dissolved Solids (TDS) content of the water supply is up to 2500 mg/L. In areas where the TDS exceeds 750mg/L it is possible that the magnesium alloy anode (supplied in the heater) may become over reactive. To alleviate this, the magnesium alloy anode should be replaced with an aluminum alloy anode (Note: Quantum does not supply this).

4c: Caution When Left Operating But Unused

If the water heater is left in an operating condition but unused for two weeks or more, a quantity of hydrogen gas (which is highly flammable) may accumulate in the top of the water cylinder. To dissipate this gas safely it is recommended that a hot tap be turned on for several minutes at a sink, basin or bath, but not a dishwasher, clothes washer or other appliance. During this procedure there must be no smoking, open flame or any other electrical appliance operating nearby. If hydrogen gas is discharged through the tap it will probably make an unusual sound similar to air escaping.
Section 5: SAFETY INFORMATION

DO NOT TURN ON POWER UNLESS THE TANK IS FULL OF WATER

5a: Safety Devices

WARNING: For safe performance this water heater is fitted with:
1. Digital Controller.
2. A thermostat (connected to the digital controller) to manage water temperature.
3. A thermostat (connected to the digital controller) to manage compressor temperature.
4. A non self-setting thermal cut out (incorporated into the digital controller).
5. Combination Pressure & Temperature relief valve.

These devices must not be tampered with or removed.
The water heater must not be operated unless each of these devices is fitted and in working order.
This appliance is not intended for use by young children or the infirm without supervision – young children should be supervised to ensure that they do not play with the appliance.

5b: Important Note Regarding PTR Valve

The Pressure & Temperature relief valve should be checked for adequate performance or replaced at intervals not exceeding 5 years, or less in areas where there is a high incidence of water deposits. Providing there is some discharge from the relief valve during each heating cycle there is no requirement to manually activate the release mechanism on the relief valve. There is a possibility that manually opening the relief valve may allow contamination / grit etc to settle in the valve seat causing continuous leakage. If the relief valve is operated manually it should be done with care.
The Pressure & Temperature relief valve and the drain outlet pipe must not be sealed or blocked.
It is normal for small amounts of water to leak from the valve during each heating cycle.

Section 6: MAINTENANCE & SERVICE INFORMATION

Your Quantum water heater is a completely sealed refrigeration system, similar to a household refrigerator. The maintenance program to be employed on your Quantum is not much different to that required for the maintenance of a standard electric water heater. However, Quantum warranty may be void if any of the following conditions are not met or if the refrigeration lines or components are damaged or altered in any unauthorized way.

6a: The Water Tank

The water tank must not be drilled or punctured. Drilled holes or punctures may damage the refrigeration pipes located on the skin of the water tank. The Quantum tank is a patented design and in fact forms the condenser of the unit; i.e. it is the hot side of the refrigeration circuit. The coils wound around the outside wall of the tank heat the tank more efficiently than any other water heater design. The coils are not in contact with the water so they never corrode or suffer from scaling, meaning the efficiency of the tank will not diminish.
6b: Air Evaporator Coils

Quantum water heaters use evaporator coils to extract heat from the air. The coil is extremely efficient in warm humid weather; however, as temperatures drop to ten degrees or less the coil will begin to collect ice. The coil has been designed with "heat injection" to defrost the coil under such conditions. The heat injection cycle is automatic and is managed by the digital controller. **It is important that the air inlet vents are kept clean. Restriction of air-inlet or outlet vents may void warranty if the system has been damaged because of insufficient airflow.**

6c: Sacrificial Anode

A sacrificial anode is fitted inside the vitreous enamel lined cylinder. Its purpose is to help protect the cylinder from the corrosive effects of water. Normally, the sacrificial anode should be inspected every fifth year and replaced if necessary. In areas where “hard water” or poor quality water conditions exist, the sacrificial anode must be inspected every second year. **Replacement anodes must meet Quantum quality specifications and must be appropriate for local water conditions.** The anode socket in the top of the tank is an RP 3/4 / 20mm thread, an 11/16” socket wrench is required to unscrew it.

6d: Service Caution – Before Any Work Is Carried Out

Before any electrical components are inspected the System MUST be turned off at the power switch / hot water circuit breaker. Do not touch wiring or any electrical components without supervision or training to Australian (or equivalent) standards.

6e: Thermal Overload (Incorporated in Digital Controller)

All models are fitted with a digital controller for heat pump management. One function of the digital controller is to initiate a shut down and lockout if the compressor reaches a temperature of 105°C. The system will not automatically restart from this. To reset the system the “SET” button on the digital controller must be pressed (hold for 6 seconds). Turning the power off then back on will also perform a reset.

6f: Routine Service

Serving requirements and timing for Quantum heat pump hot water systems.

<table>
<thead>
<tr>
<th>MAINTENANCE REQUIRED</th>
<th>YEAR AND MONTH FOR SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Check PTR Valve</td>
<td>X</td>
</tr>
<tr>
<td>Replace PTR Valve</td>
<td>X</td>
</tr>
<tr>
<td>Replace Anode</td>
<td>X</td>
</tr>
<tr>
<td>Flush Water Tank</td>
<td>X</td>
</tr>
<tr>
<td>Check Of Electrical</td>
<td>X</td>
</tr>
<tr>
<td>Check Of Refrigeration</td>
<td>X</td>
</tr>
<tr>
<td>Check Of Thermostats</td>
<td>X</td>
</tr>
<tr>
<td>Check For Any Corrosion</td>
<td>X</td>
</tr>
<tr>
<td>Check of Plumbing</td>
<td>X</td>
</tr>
</tbody>
</table>

6f.1: Six Month Service (By Owner)

To be carried out every six months. Operate the Pressure & Temperature relief valve for approximately 10 seconds by activating the release mechanism on the valve to ensure water is released to waste through the relief drainpipe.
It is very important that the mechanism is operated gently. Check to ensure the valve closes correctly.

Note: providing some hot water discharge has been observed from the relief valve during normal heating cycles, manually activating the valve is not necessary and could cause contamination / grit to lodge in the relief valve seat causing constant leakage.

An inspection for any obvious signs of corrosion of the outer case or air intake grills should also be conducted.

6f.2: Five Year Service (By Authorized Personnel Only)

The five-year service should be carried out by a licensed tradesperson every five years. It is recommended that your local Quantum distributor or service agent carry out this service. The service should include the following: -

1. Replace the Pressure & Temperature Relief valve.
2. Replace the anode.
3. Flush the water heater.
4. Checking of the refrigeration system.
5. Checking of thermostats, digital controller and electrical components.

If in doubt, contact Quantum Energy Technologies for your nearest distributor or service agent. Our website www.quantumenergy.com.au and www.quantumenergy.co.nz also provide an up to date list of Quantum distributors.

6f.3: Access & Removal Of Sacrificial Anode

The anode can be accessed via the heat pump section, to remove.

1. Turn off power to the unit, cut into water valve, open PTR valve to release pressure on the system.
2. Remove the screws around the top cover of the heat pump & remove the heat pump top cover.
3. For easier access the front inspection panel on the heat pump section should also be removed.
4. Locate and remove the plastic plug through the centre of the heat pump chassis.
5. The anode head is now accessible and can be unscrewed with a suitable 1 1/16” socket wrench.
6. Once unscrewed the anode can be drawn out through the top of the tank / heat pump section.
7. The new anode can then be fitted and the heater reassembled.

6f.4: Flushing Of Water Tank

As with other hot water heater tanks, dissolved solids in the water or scale may accumulate in the bottom of the water tank forming sludge. This is generally less of a problem with Quantum units as no internal elements or burners are used.

If such sludge build-up does occur the following procedure can be followed to clean out the tank.

1. Turn Off power to the unit.
2. Turn Off water supply to the unit.
3. Remove the blanking plug (brass fitting) from the unused inlet (normally on the right hand side for left hand connected tanks) – the inlets are at the bottom of the tank 70mm up from the base.

4. Remove the blanking plug from the unused hot water outlet (normally on the right hand side for left hand connected tanks) – the outlets are at the top of the tank.

5. Allow the water to drain from tank, while the water is draining a non-metallic rod may be inserted through the open cold-water inlet and used to break up any sludge and assist in its removal.

6. Care should be exercised during this procedure so as not to damage the glass lining of the tank. The use of metal rods should not be used and plastic or wooden rods used instead.

7. Turning the cold water supply back on while the tank is emptying or after the tank has drained and continuing with the mechanical agitation will further assist with the removal of the sludge.

8. Once the tank has been cleaned, as much as possible, the cold water should be turned off again and the blanking plugs refitted. Care should be taken to ensure good a hydraulic seal is maintained – the use of plumbing tape will be required.

9. When the unit is fully reassembled the cold water supply and power supply can be turned on and the unit allowed to reheat.

6f.5: Refrigeration & Thermostat Servicing

Qualified refrigeration technicians only should service the heat pump. The information provided in Appendix A: Trouble Shooting Guide will provide the necessary information for qualified personnel to service this part of the unit.

Section 7: RECOGNITION OF ABNORMAL OPERATION

7a: Pressure & Temperature Relief Valve Running

It is not unusual for the Pressure & Temperature Relief valve to allow a small quantity of water to escape during the heating cycle. The amount of discharge will depend on hot water usage. As a guide, if it discharges more than 20 litres of water in 24 hours then there may be a problem.

7a.1: Continuous Trickle

Likely caused by a build up of foreign matter. Try gently operating the release mechanism on the Pressure & Temperature Relief valve for a few seconds. This may dislodge any small particles of foreign matter and rectify the fault.

7a.2: Steady Flow

Likely causes are excessive water supply pressure (500kPa Pressure Limiting valve should be fitted), a faulty Pressure & Temperature Relief valve, a faulty or non existent pressure limiting valve or a faulty Thermostat / Digital Controller. Turn off the electricity supply and contact your Quantum distributor or service agent.

7b: No Hot Water

1. Is the Electricity switched on? Check that the isolating switch, to which the Quantum is connected, is on. Check that the switch marked “Water Heater” in the switchboard is on. Are all circuit breakers on? If on Off Peak, is the meter switching on when it should? If the system is connected to some form of Off Peak metering, running out of hot water
can be quite common – Off Peak tariffs are not recommended for Quantum water heaters.

2. Check that the thermal overload (on the digital controller) has not been tripped. If so press the “Set” button (hold for 6 seconds) to reset it.

3. Is the Pressure & Temperature Relief valve discharging too much water? See Section 7a: “Pressure & Temperature Relief Valve Running”.

4. Do you have the correct size water heater for your requirements? Sizing details are available from your Quantum supplier.

5. Is one outlet (such as the shower) using more hot water than you think? Carefully review the family's hot water usage and if necessary check the shower flow rates with a bucket and a watch. If it is not possible to adjust water usage patterns, an inexpensive flow control valve can easily be fitted to the shower outlet.

7c: High Electricity Bills

1. Is the Pressure & Temperature Relief valve discharging too much water? See Section 7a: “Pressure & Temperature Relief Valve Running”.

2. Is one outlet (such as the shower) using more hot water than you think? See Section 7b: “No Hot Water”.

3. Is there a leaking hot water pipe or dripping hot water tap? A small leak can waste a large quantity of hot water.

4. Replace faulty tap washers and have your plumber rectify any leaking pipe work.

5. Have any new appliances been installed that might be using the extra power?

6. If there are no water leakages around the building and no excessive usage of hot water, yet electricity bills are higher than normal (without any other appliance being responsible) then it may indicate a problem with the water heater. Contact your nearest Quantum distributor or service agent.

Section 8: WARRANTY CERTIFICATE

8a. Terms Of Warranty

QUANTUM WATER HEATERS are manufactured by Quantum Energy Technologies Pty Ltd. QUANTUM ENERGY TECHNOLOGIES PTY LTD (the Company) WARRANTS “THIS QUANTUM ENERGY SYSTEM” (the unit) against faulty workmanship, materials and defects in manufacturing as here in after provided:

1. Storage tank integral with condenser coil: - Warranted for a period of five (5) years from the date of installation

2. Refrigeration pipe work, refrigeration valves, compressor, fan coil and motor, electrical components including thermostats, digital controller, solenoids, wiring and controls: - warranted for a period of two (2) years from date of installation. Plumbing valves supplied with the unit are covered by their respective manufacturers’ warranties.

3. Labour, delivery and / or transportation: - Where the Company considers it necessary to repair or replace any component part covered by the warranty, the consequential labour, delivery and / or transportation services will be provided free of charge to the owner within a fifty-kilometre radius from where the unit was purchased. Customers outside this area will be subject to freight and travel charges incurred by the service agent carrying out the work. The date and time of the commencement of such warranty work will be at the discretion of the Company. Quantum does not warrant that such repair work will take place within any particular period. A call out fee applies to any warranty calls made outside normal QUANTUM business hours.

The Company’s liability under this warranty shall be limited to the free replacement or repair of any defective component parts of the unit and shall not cover any consequential loss or damage arising out of any such defect.
THE WARRANTY SHALL NOT APPLY IN ANY OF THE FOLLOWING EVENTS:

1. The unit is installed by an non licensed Plumber with inadequate technical skills or training to perform the task;
2. The installer does not issue a Plumber’s Certificate of Compliance in the State of Victoria.
 (State Rebate’s in Victoria will not be paid unless a Certificate of Compliance number is provided).
3. Where alterations, addition or repairs to the unit are carried out by persons unauthorized by the Company;
4. Accident or in the opinion of the Company, misuse and / or abuse of the unit;
5. Where the anode has not been periodically replaced in accordance with the directions in this Owner’s Manual or where in the opinion of the Company, it has been incorrectly replaced;
6. Where the loss or damage is, in the opinion of the Company, due to the failure to install, operate and / or maintain the unit in accordance with any of the directions contained in this Owner’s Manual.

THIS WARRANTY DOES NOT COVER LOSS OR DAMAGE TO THE UNIT OCCASIONED BY ANY OF THE FOLLOWING PERILS: -

1. Riot, Civil Commotion or Any Consequence of War or Invasion;
3. Theft or Larceny.

IMPORTANT

This warranty is in addition to all other rights and remedies available to the consumer under the Trade Practices Act 1974 as amended and other relevant local laws and shall not be taken as applying to exclude, restrict or modify such rights or remedies in any manner whatsoever.

Where the unit is of a kind not ordinarily acquired for personal, domestic or household use, then the liability of the Company for breach of any condition or warranty implied by the aforementioned statutes (other than a condition or warranty implied by Section 69 of the Trade Practices Act or any corresponding Section on any other enactment in any State or Territory for the time being enforced) is limited to any one or more of the following as the Company decides: -

1. The replacement of the unit or the supply of an equivalent unit;
2. The repair of the unit;
3. The payment of the cost of replacing the unit or of acquiring an equivalent unit;
4. The payment of the cost of having the unit replaced

8b: Items Not Covered By Warranty

- Service calls due to:
 - Dirty Filters.
 - Blown Fuses
 - Incorrect Operation.
 - Tripped Circuit Breakers.
 - Main Isolator Switched Off.
 - Blocked Drains (Evaporator or PTR Valve).

- Failure to start due to voltage conditions or other damage due to inadequacy or interruption of electrical service.

- Damage caused by accident, misapplication and abuse or tampering.

- Damage caused by use in a corrosive atmosphere (e.g. such as coastal regions).

- Filter cleaning and / or replacement, unless defective.
Cleaning / maintenance of the water heater unit.

Calls made to check the operation of a unit, which is found to be working satisfactorily.

Remounting or relocating equipment due to ground subsidence.

Modifications to system after installation due to changes in requirements.

Relocation of equipment due to complaints of noise level or inappropriate location.

No responsibility shall be accepted for damage to the system or property, if it is found that continued use of a faulty system has occurred.

No responsibility shall be accepted for delays due to:
- Unavailability of parts from suppliers.
- Extreme delays due to unusually high demand for service.

8c: Before Phoning For Service

Please check the following:
- Have all the above mentioned items been checked and adhered to?
- Have you checked through all items in Sections 6 & 7 of this manual?
- Has the main isolation switch / circuit breaker / hot water switch been turned on?
- Have any fuses in the switchboard blown?
- Is the air filter clean?

Warranty shall be carried out during normal business hours 08:00 hours (08:00 AM) to 16:30 hours (04:30 PM) Monday to Friday. Warranty covers travel within a 50-km distance from the place of purchase, distributor or service agent’s premises. Any additional travel costs are at the expense of the customer.
Section 9: SPECIFICATIONS

Figure 3: Specifications & Dimensions

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Mass (Empty) (Kg)</th>
<th>Mass (Full) (Kg)</th>
<th>R134a Charge (gm)</th>
<th>Dimensions (mm)</th>
<th>Power Input (W)</th>
<th>Nominal Capacity (Lt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150-08ACW-134</td>
<td>100</td>
<td>250</td>
<td>1650</td>
<td>1620 975 540</td>
<td>660</td>
<td>125</td>
</tr>
<tr>
<td>200-08ACW-134</td>
<td>115</td>
<td>315</td>
<td>1650</td>
<td>1950 1305 540</td>
<td>660</td>
<td>175</td>
</tr>
<tr>
<td>270-11AC3/4-134</td>
<td>135</td>
<td>405</td>
<td>1850/1900</td>
<td>1900 1190 650</td>
<td>986</td>
<td>250</td>
</tr>
<tr>
<td>340-11AC3/4-134</td>
<td>170</td>
<td>510</td>
<td>1850/1900</td>
<td>2200 1490 650</td>
<td>986</td>
<td>315</td>
</tr>
<tr>
<td>340-17ACW-134</td>
<td>190</td>
<td>530</td>
<td>2650</td>
<td>2240 1490 650</td>
<td>1660</td>
<td>315</td>
</tr>
<tr>
<td>150-08ASW-134</td>
<td>90</td>
<td>240</td>
<td>1650</td>
<td>1545 975 540</td>
<td>660</td>
<td>125</td>
</tr>
<tr>
<td>200-08ASW-134</td>
<td>105</td>
<td>305</td>
<td>1650</td>
<td>1875 1305 540</td>
<td>660</td>
<td>175</td>
</tr>
<tr>
<td>270-11AS4-134</td>
<td>120</td>
<td>390</td>
<td>1900</td>
<td>1765 1190 650</td>
<td>986</td>
<td>250</td>
</tr>
<tr>
<td>340-11AS4-134</td>
<td>155</td>
<td>495</td>
<td>1900</td>
<td>2060 1490 650</td>
<td>986</td>
<td>315</td>
</tr>
<tr>
<td>340-17ASW-134 (340TIH-134)</td>
<td>165</td>
<td>505</td>
<td>2650</td>
<td>2110 1490 650</td>
<td>1660</td>
<td>315</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Evaporator Dimensions</th>
<th>Evaporator Weight</th>
<th>Evaporator Fan Noise @ 1.5 mtr</th>
<th>Air Flow Litres/Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>150/200-08ACW-134</td>
<td>Internal</td>
<td>N/A</td>
<td>50dBA</td>
<td>415</td>
</tr>
<tr>
<td>270/340-11AC3/4-134</td>
<td>Internal</td>
<td>N/A</td>
<td>52dBA / 48dBA</td>
<td>550</td>
</tr>
<tr>
<td>340-17ACW-134</td>
<td>Internal</td>
<td>N/A</td>
<td>58dBA</td>
<td>800</td>
</tr>
<tr>
<td>150/200-08ASW-134</td>
<td>430×380×120 mm</td>
<td>15kg</td>
<td>48dBA</td>
<td>460</td>
</tr>
<tr>
<td>270/340-11AS4-134</td>
<td>480×430×120 mm</td>
<td>18kg</td>
<td>50dBA</td>
<td>600</td>
</tr>
<tr>
<td>340-17ASW-134</td>
<td>655×580×380 mm</td>
<td>35kg</td>
<td>58dBA</td>
<td>880</td>
</tr>
</tbody>
</table>
A qualified refrigeration technician must install the Split Air model. While the plumbing and electrical work is the same as the Compact, this unit also requires on site refrigeration work.
Section 10: OPERATION & ADJUSTMENT OF THE DIGITAL CONTROLLER

Caution: Alteration of the Digital Controllers programming & settings without authorisation from Quantum Energy Technologies will void your warranty. This section is provided ONLY for qualified refrigeration technicians to assist in servicing, repairs or trouble shooting.

10a: The Buttons

Use In Conjunction With The Layout Diagram Fig:5 And Wiring Diagrams Fig: 6&7&8&10&11.

10a.1: SET BUTTON

a) To enter the settings node, press the SET button 3 times; the display will show H55, this is the water temperature cut out set point. Pressing the UP or DOWN button will adjust the set point from 10°C to a maximum setting of 62°C (factory setting 55°C).

b) Press & hold for 6 seconds to enter the de-icing mode. If display shows “OFF” press & hold for another 6 seconds to exit this mode. (Note this may cause system malfunction so avoid using).

c) Pressing the SET button (hold for 6 seconds) will perform a manual reset of the system if required i.e. after a 105°C Thermal Trip. Turning power off to the system, then back on will also reset it.

10a.2: UP BUTTON

a) This key becomes operational after entering the settings mode above.

b) Press 3 times to display Axx (the compressor temperature). Push again to display bxx (evaporator temperature) or again for Cxx (ambient temperature).

c) During the time delay start period, press & hold for 3 seconds to force a compressor start. When the compressor is running, press & hold for 3 seconds to force a compressor shutdown.

10a.3: DOWN BUTTON

a) This key becomes operational after entering the settings mode above.

b) Press & hold for 3 seconds to simultaneously open the de-ice valve and liquid injection valve; the valves will close 10 seconds later.

c) When compressor is running, press 3 times to display the Amperage being drawn Cxx.

10b: Programming Menu

To restore the digital controllers factory settings, press the SET button and hold while turning the power onto the system.

To exit any level press the SET button to cycle through all menu items until the controller returns to the water temperature display once again.

10b.1: First Level: Press SET + UP for 6 Seconds

- **t10** Compressor start time delay; 1 to 30 min adjustable. Factory setting 10 min.
- **p10** Interval for compressor start after stop; 3 to 30 min adjustable. Factory setting 10 min.
- **d10** Interval for over heat auto-reset; 3 to 30 min adjustable. Factory setting 10 min.
- **E10** The max de-icing time; 5 to 30 min adjustable. Factory setting 10 min.
- **F45** The interval for de-icing; 10 to 99 min adjustable. Factory setting 45 min.

10b.2: Second Level: Press SET+DOWN for 6 Seconds

- **A65** Highest water temperature setting; 30 to 65°C adjustable. Factory setting 65°C.
d05 Temperature difference for heat pump reactivation (H55 - d05=50℃) 5 to 30℃ adjustable. Factory setting 5℃.

H95 Overheat trip-out temperature; 60 to 98℃ adjustable. Factory setting 95℃.

L70 Overheat reset temperature; 60 to 98 adjustable. Factory setting 70℃.

P85 Liquid Injection activation temperature; 55 to 98℃ adjustable. Factory setting 85℃.

b75 Liquid Injection de activation temperature; 55 to 98℃ adjustable. Factory setting 75℃.

F08 De-ice de activation temperature; 1 to 15℃ adjustable. Factory setting 8℃.

C-5 De-icing temperature setting; -9℃ to -1℃; Factory setting -5℃.

10b.3: Third Level: Press UP+DOWN for 6 Seconds

FXX Start Up model; F00 to F03 adjustable. Factory setting F02.

F00 Following compressor start the Liquid Injection & De Icing valves remain closed.

F01 Following compressor start the Liquid Injection valve opens, 3 seconds later it closes.

F02 Following compressor start the De-Icing valve opens, 3 seconds later it closes.

F03 Following compressor start the Liquid Injection & De Icing valves open, 3 seconds later they close.

A25 Compressor amperage overload adjustment; 0 to 30 Amps adjustable. Factory setting 25A.

10c: Error Codes

E01 Water temperature sensor open or short circuit. Auto reset.

E02 Compressor temperature sensor open or short circuit. Auto reset.

E03 Evaporator temperature sensor open or short circuit. Auto reset.

E04 Compressor overload protection. Auto reset the first time, manual reset the second time.

E05 Compressor overheat protection (exceeding H95 setting). Auto reset.

E07 Low pressure protection. Manual reset.

E08 Ambient temperature sensor open or short circuit (Optional). Auto reset.

10d: De-Icing

Only if the temperature, measured by the evaporator sensor, is below 0℃ will the de-icing function operate.

When the compressor has been operating for 45 min (1st Level F45) and the evaporator temperature is below -5℃ (2nd Level C-5), de-icing is activated and the indicator will be on. When the evaporator temperature rises to 8℃ (2nd Level F08) or the de-icing time has been more than 10 min (1st Level E10), de-icing is de activated.

10e: Operating Principle

At power on the compressor will start after the 10 min time delay (1st Level t10). When the water temperature reaches 55℃ the compressor will be de activated. As the water temperature drops below 50℃ (H55-d05) and the compressor has not been in operation for at least 10 min (1st Level P10), the compressor will be activated.

During compressor operation, when the compressor temperature goes above 85℃ (2nd Level P85), the liquid injection will be activated. When the compressor temperature (Axx) drops below 75℃ (2nd Level b75), the liquid injection will be activated.

If the compressor temperature (Axx) goes above 95℃ (2nd Level H95), the compressor will be de
activated and the error code E05 will be displayed. When the compressor temperature drops below 70℃ (2nd Level L70), and the compressor has not been in operation for at least 10 min (1st Level d10), the compressor will be reactivated.

As the compressor temperature goes above 105℃, the compressor will be de activate and the error code E06 will be displayed. A manual reset is required.

When the current draw is greater than the present value and lasts for 6 seconds, the compressor is de activated and the error code E04 will be displayed, 10 minutes later the compressor will be re activated. If the overload occurs again the system is de activated and the error cod E06 will be displayed. A manual reset will be required or the power to the unit can be switched off and then on again to reset the system.

10f: Adjusting

To enter any menu, press the SET button to select the item to be adjusted. Press Up and Down to do the adjustment. After finishing the adjustment, press the SET button again to confirm. The screen flashes once to indicate the adjustment has been updated successfully. Press the SET button again to enter the next menu or return.

10f.1: Time Controller

A time control function heat pump water heater can also be supplied by QUANTUM ENERGY TECHNOLOGIES Pty Ltd.

![Fig 5. Picture of time controller](image)

<table>
<thead>
<tr>
<th>Menu</th>
<th>Function</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>On01</td>
<td>Power on, time 1</td>
<td>00:0023:59CLOS</td>
<td>CLOS</td>
</tr>
<tr>
<td>OFF1</td>
<td>Power off, time 1</td>
<td>00:0023:59CLOS</td>
<td>CLOS</td>
</tr>
<tr>
<td>On02</td>
<td>Power on, time 2</td>
<td>00:0023:59CLOS</td>
<td>CLOS</td>
</tr>
<tr>
<td>OFF2</td>
<td>Power off, time 2</td>
<td>00:0023:59CLOS</td>
<td>CLOS</td>
</tr>
<tr>
<td>On03</td>
<td>Power on, time 3</td>
<td>00:0023:59CLOS</td>
<td>CLOS</td>
</tr>
<tr>
<td>OFF3</td>
<td>Power off, time 3</td>
<td>00:0023:59CLOS</td>
<td>CLOS</td>
</tr>
</tbody>
</table>

Notes:
1. CLOS: time is invalid.
2. The method of operation for “SET” “UP” “DOWN” keys can refer to 10a item.
3. In the adjustment process, press the “CON” key can return to the menu item without changing the current time settings.
4. Clock change: Press "SET+CON" key for 3 seconds to change the system time.
5. Within four hours of the initial power-on, the system is always working. It is not limited by the on/off time. Four hours later, the system performs start and stop logic by the on/off time.
Fig 6: Wiring Diagram--150/200-08ACW-134 & 270/340-11AC3-134

Fig 7: Wiring Diagram--150/200-08ASW-134 & 340-17ASW-134 (340TIH-134)
Fig 8: Wiring Diagram - 340-17ACW-134

Fig 9: Fault Indicator - 340-17ACW-134
Fig 10: Wiring Diagram—with Timer—150/200-08ACW-134 & 270/340-11AC4-134

Fig 11: Wiring Diagram—with Timer—150/200-08ASW-134 & 270/340-11AS4-134
Appendix A: TROUBLE SHOOTING GUIDE ON QUANTUM WATER

Models covered in this guide:

800 Watt. Compact and Split Air Source Domestic Hot Water Heater (0.8kW compressor models):
150/200-08ACW-134; 150/200-08ASW-134

1100 Watt. Compact and Split Air Source Domestic Hot Water Heaters (1.1kW compressor models):
270/340-11AC3-134; 270/340-11AC4-134; 270/340-11AS4-134

1700 Watt. Titan and Split Compact & Split Air Source Hot Water Heaters (1.7kW compressor models):
340-17ACW-134; 340-17ASW-134

A.1: No Hot Water; Compressor Not Running

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Test / Observation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Power Failure</td>
<td>Check power supply, cable & connections.</td>
<td>If CB off refer to 2.</td>
</tr>
<tr>
<td>2. Circuit breaker (CB) tripped off.</td>
<td>Check for short circuit (SC) in line or wiring. If circuit breaker trips off when compressor re-starts, check compressor grounding and winding resistance.</td>
<td>Remove line or wiring SC. Replace compressor if found SC.</td>
</tr>
<tr>
<td>3. Faulty / incorrect capacitor.</td>
<td>Check capacitor operation if compressor will not start.</td>
<td>Replace faulty or wrong capacitor.</td>
</tr>
<tr>
<td>4. Compressor Seized.</td>
<td>Compressor will not start, draws high current, or mechanically noisy when trying to start.</td>
<td>Check the voltage. Hit the compressor gently by a wood hammer. Replace compressor.</td>
</tr>
<tr>
<td>5. Thermal cut-out (TCO) on digital controller tripped off.</td>
<td>No power to compressor after thermal cut out (TCO). If TCO trips off repeatedly, see table “A2”.</td>
<td>Reset the TCO by pressing the “SET” button on the digital controller. Check the gas amount from sight glass.</td>
</tr>
<tr>
<td>6. Faulty water thermostat.</td>
<td>Thermostat did not cut in even though water temperature is below the restart point. Electrical disconnection at the thermostat.</td>
<td>Check / replace water thermostat or digital controller. Reconnect or replace if faulty.</td>
</tr>
<tr>
<td>7. Compressor cuts out on current overload protector</td>
<td>Test for faulty capacitor. Test for compressor short circuit / compressor seized</td>
<td>Replace faulty capacitor Replace compressor if faulty</td>
</tr>
</tbody>
</table>

A.2: Thermal Cut Out Trips Off Repeatedly

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Test / Observation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Low refrigerant charge.</td>
<td>Check refrigerant charge. Test for possible leak in the refrigeration circuit.</td>
<td>Top up refrigerant or re-charge. Repair leak, or if not repairable, contact QUANTUM service.</td>
</tr>
<tr>
<td>2. High refrigerant charge.</td>
<td>Check refrigerant charge. Over charge causes high current draw and excessive head pressure resulting in a hot compressor.</td>
<td>Correct the refrigerant charge.</td>
</tr>
<tr>
<td>3. Incorrect voltage and frequency.</td>
<td>Check power supply quality while unit is running.</td>
<td>Rectify improper power supply or shut off system and report to the client.</td>
</tr>
</tbody>
</table>
4. Compressor runs hot:
Internal leakage.
High suction superheat.
High current draw.
High head pressure.
Thermal Cut Out fault.
De-ice solenoid remains open.

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Test / Observation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tank water drawn off - unit only recently started.</td>
<td>Wait until water is heated.</td>
<td>If water is not heated in the expected time, check for other reasons like short of gas.</td>
</tr>
<tr>
<td>2. Low or no refrigerant.</td>
<td>Check for shortage of refrigerant or leakage in the system.</td>
<td>Refer to Table A.2: Item 1</td>
</tr>
<tr>
<td>3. Compressor not compressing.</td>
<td>a. Check for internal valve leak. When shut off, gas will go back through the compressor making noise and vibration.</td>
<td>a. Replace compressor if faulty.</td>
</tr>
<tr>
<td></td>
<td>b. Minimum pressure difference across compressor due to TX valve malfunction (open too much). Test TX valve.</td>
<td>b. Adjust (close) or Replace TX valve.</td>
</tr>
<tr>
<td>4. Frozen evaporator.</td>
<td>a. Malfunction of de-ice system or persistent cold weather resulting in poor performance of the fin coil evaporator.</td>
<td>a. Repair or replace de-ice system or avoid running in constant cold weather.</td>
</tr>
<tr>
<td></td>
<td>b. Blocked evaporator.</td>
<td>b. Repair blockage or replace parts.</td>
</tr>
<tr>
<td></td>
<td>c. Restricted airflow.</td>
<td>c. Clean or replace air filter (if fitted), or clear an blockages on the air ways.</td>
</tr>
</tbody>
</table>

A.3: No Hot Water; Compressor Running

5. Poor oil return to compressor. Check for oil traps in the tubes between evaporator and tank. Rectify installation defects
A.4: Shortage Of Hot Water

<table>
<thead>
<tr>
<th>Probable Cause</th>
<th>Test / Observation</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Unexpected load or weather condition.</td>
<td>a. Check for excessive hot water draw.</td>
<td>a. Re-size if extra hot water draw is to be included in the design.</td>
</tr>
<tr>
<td></td>
<td>b. Check for not water leakage.</td>
<td>b. Repair leakage if found.</td>
</tr>
<tr>
<td></td>
<td>c. Check heat loss if the heater is on reticulation circuit.</td>
<td>c. Re-size with heat loss included in the design or install booster.</td>
</tr>
<tr>
<td>3. System not producing enough heat.</td>
<td>Check according to Table A.3: item 2, 3 & 4.</td>
<td>See Table A.3: items 2, 3 & 4.</td>
</tr>
</tbody>
</table>

A.5: Testing Undercharge Or Overcharge Of Refrigerant

Unlike normal refrigerating or air conditioning systems, the QUANTUM heat pump operates under a very wide range of evaporating and condensing temperatures. To identify undercharge or overcharge of refrigerant gas in the system, three parameters need to be checked.

1. Current Draw
2. System Pressures
3. Bubbles through sight glass on the receiver / filter-dryer

A.6: Water Temperature, Condensing Pressure & Amperage – R134a Units

<table>
<thead>
<tr>
<th>Water Temperature</th>
<th>Approx. Discharge Gauge Pressure</th>
<th>Nominal Current Draw (varies with evaporating temperature)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In Tank °C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>kPa</td>
<td>PSI</td>
</tr>
<tr>
<td>30</td>
<td>900-1050</td>
<td>130-150</td>
</tr>
<tr>
<td>40</td>
<td>1200-1350</td>
<td>175-195</td>
</tr>
<tr>
<td>50</td>
<td>1500-1600</td>
<td>218-232</td>
</tr>
<tr>
<td>55</td>
<td>1700-1850</td>
<td>247-270</td>
</tr>
<tr>
<td>60</td>
<td>1900-2100</td>
<td>305-305</td>
</tr>
</tbody>
</table>

A.7: Suction Pressure – R134a Units

<table>
<thead>
<tr>
<th>Ambient Temperature °C</th>
<th>Evaporator Temperature °C</th>
<th>kPa</th>
<th>PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>3</td>
<td>225</td>
<td>32.5</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>275</td>
<td>39.5</td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>325</td>
<td>47</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
<td>385</td>
<td>56</td>
</tr>
</tbody>
</table>
A.8: Signs Of Correct Charge

During normal operation with the correct amount of refrigerant gas, the sight glass should show clear liquid. A very few small bubbles may be present when the system is started or when the TX valve opens quickly. But it should return to clear liquid shortly after. Current draw and delivery pressure will be within the nominal range and temperatures should be consistent with gas properties. Correct amount of charge is listed in the Table A10.

A.9: Signs Of Undercharge

When bubbles through the sight glass persist for a significant time or repeat frequently then it is a sign of refrigerant undercharge. This can be confirmed by a low current draw together with low pressures. Note that unusual current draw could also be a sign of other defects in the system. If the sight glass shows clear gas (not liquid), current draw is too low and discharge gas is not hot or suction pressure too low then the system is nearly or totally empty.

Note that low suction pressure could also indicate a blockage in low-pressure side or a closed TX valve.

A.10: Signs Of Overcharge

Continuous liquid through sight glass: Assuming TX valve is functioning normally, evaporator tends to flood, head pressure tends to be high, current draw is high and compressor is noisy.

A.11: Technical Data For Service Personnel – Mitsubishi Compressors – R134a

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TX valve & Setting</td>
<td>Danfoss TDEN1.1TR 1 1/4 turns clockwise from factory setting</td>
<td>Danfoss TDEN1.1TR 1 turns clockwise from factory setting</td>
<td>Danfoss TEN2 + #3 3 1/2 turns from full open</td>
</tr>
<tr>
<td></td>
<td>Danfoss TEN2 + #2 3 1/2 turns from full open</td>
<td>Danfoss TEN2 + #3 3 1/2 turns from full open</td>
<td>Factory setting Emerson AAE 2MC 8 turns from full open</td>
</tr>
<tr>
<td>Winding Resistance @20℃</td>
<td>C-R: 2.13Ω, C-S: 3.91Ω</td>
<td>C-R: 0.96Ω, C-S: 1.77Ω</td>
<td></td>
</tr>
<tr>
<td>Run Capacitor</td>
<td>30μF (+10, -5%) 370VAC</td>
<td>30μF (+10, -5%) 370VAC</td>
<td>60μF (+0, -15%) 400VAC</td>
</tr>
<tr>
<td>Rated power supply</td>
<td>220-240VAC, 50Hz</td>
<td>220-240VAC, 50Hz</td>
<td>220-240VAC, 50Hz</td>
</tr>
<tr>
<td>Rated circuit breaker</td>
<td>1Φ, 10A</td>
<td>1Φ, 15A</td>
<td>1Φ, 15A</td>
</tr>
<tr>
<td>De-ice control setting</td>
<td>On -5 ℃, Off +8 ℃ (Timed De-icing)</td>
<td>On -5 ℃, Off +8 ℃ (Timed De-icing)</td>
<td>On -5 ℃, Off +8 ℃ (Timed De-icing)</td>
</tr>
<tr>
<td>Liquid injection capillary</td>
<td>ID 0.6mm x 1.5m</td>
<td>ID 1.1mm x 2.9m</td>
<td>ID 1.1mm x 2m</td>
</tr>
<tr>
<td>Liquid injection thermostat</td>
<td>On at 85 ℃, Off at 75 ℃</td>
<td>On at 85 ℃, Off at 75 ℃</td>
<td>On at 85 ℃, Off at 75 ℃</td>
</tr>
<tr>
<td>Water temperature setting</td>
<td>58℃/8℃ (Del. ≥60℃)</td>
<td>58℃/8℃ (Del. ≥60℃)</td>
<td>60℃/8℃ (Del. ≥60℃)</td>
</tr>
<tr>
<td>Refrigerant charge</td>
<td>1650g</td>
<td>1850g</td>
<td>2650g</td>
</tr>
<tr>
<td>Thermal cut-out setting</td>
<td>105 ℃, manual reset</td>
<td>105 ℃, manual reset</td>
<td>105 ℃, manual reset</td>
</tr>
</tbody>
</table>

Document number: QDC0030PD-16.4
Appendix B: RECOMMENDED CONNECTIONS FOR COMMERCIAL MODELS

Figure B1: Hydronic Connection for 340-17ACW3-134

Note: The air discharging side of the Compact unit should not against the wall. If have to, a min 500mm distance will be required. Also, one unit’s air discharge side should not face to the other unit’s inlet side.

Figure B2: Hydronic Connection for 1020-17ACW-134

TIPS:
1. If the water supply pressure beyonds 800Kpa, This device must be installed;
2. It is recommended to install this valve;
3. Water pump could be controlled by the thermostat of tanks.
Warranty Card

Product Model: [] **Serial Number:** []

End User Details

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installed Address</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Country</th>
<th>P.C.</th>
<th>Work Phone</th>
<th>Mobile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fan Coil Evaporator

<table>
<thead>
<tr>
<th>Location (i.e. Outdoor / Indoor)</th>
<th>Evaporator Ventilation</th>
<th>Air Flow Unrestriction</th>
<th>Air Box vs Refrigeration (Split System)</th>
<th>Oil Trap Created</th>
<th>Yes □</th>
<th>No □</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cold air re-circulated</th>
<th>Yes □</th>
<th>No □</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access For Service</td>
<td>Good □</td>
<td>Poor □</td>
</tr>
<tr>
<td>Condensation Drain</td>
<td>Yes □</td>
<td>No □</td>
</tr>
</tbody>
</table>

Plumbing

<table>
<thead>
<tr>
<th>Mains Water Pressure</th>
<th>Pressure Limit Valve</th>
<th>If Yes kPa Rating</th>
<th>Drip Tray Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Yes □ No</td>
<td></td>
<td>□ Yes □ No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>kPa</th>
<th>kPa</th>
</tr>
</thead>
</table>

Warranty Registered (Office Use Only) □

Date Manufactured: []

Installation Details

<table>
<thead>
<tr>
<th>Install Type</th>
<th>□ New</th>
<th>□ Replace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old System (Type)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tank Position</td>
<td>□ External</td>
<td>□ Internal</td>
</tr>
<tr>
<td>Access To Tank</td>
<td>□ Good</td>
<td>□ Poor</td>
</tr>
<tr>
<td>Customer Address (if different to site address)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electrical

<table>
<thead>
<tr>
<th>Power Supply Rating</th>
<th>C.B. Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connection Tariff</th>
<th>□ Std</th>
<th>□ OP1</th>
<th>□ OP2</th>
</tr>
</thead>
</table>

Seller/Installer

<table>
<thead>
<tr>
<th>Sold By</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Telephone / Fax</th>
<th>Installers Company</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Installers Name</th>
<th>Installers Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address</th>
<th>Telephone / Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Australia Customers: PO Box 553 Strawberry Hills, NSW 2012 Australia

New Zealand Customers: PO Box 303519 North Harbor, North Shore 0751 NZ

Failure to complete and return this record sheet to Quantum Energy (at the above address) may jeopardize warranty

REMOVE THIS PAGE
NOTE: Every care has been taken to ensure the accuracy in preparing this publication. No liability can be accepted for any consequences, which may arise as a result of its application.

Quantum: Your Best Hot Water Solution!